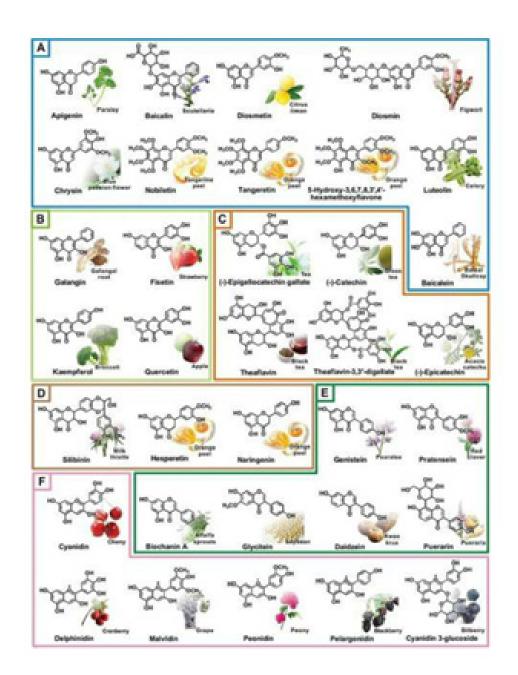


INTERACCIONES FÁRMACO-ALIMENTO

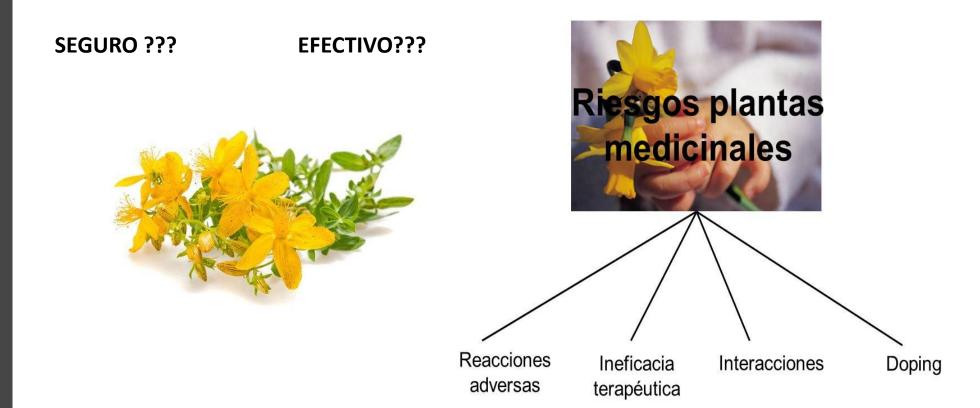
Mar Blanco Rogel

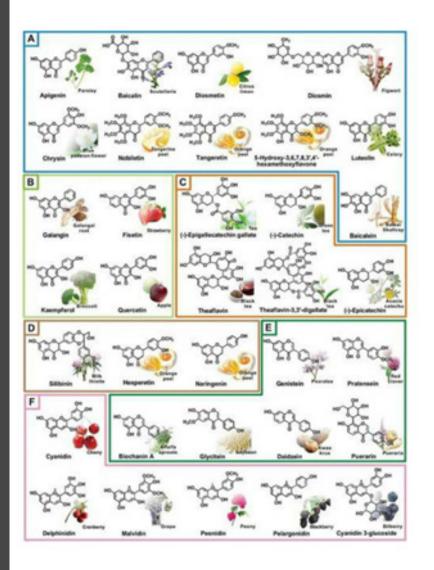
INTERACCIONES

FÁRMACO- FITOTERAPIA



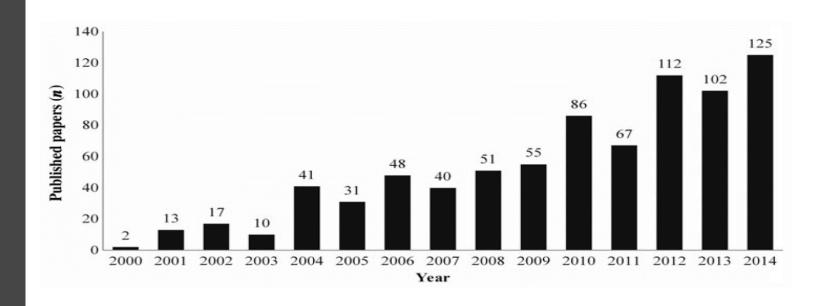
FITOTERAPIA


- Estructuras derivadas del metabolismo secundario de las plantas
- Protección frente depredadores y agentes externos medioambientales
- Polifenoles, taninos, catequinas, proantocianidinas....


INTERACCIONES FC --- PLANTAS

100 % NATURAL

INTERACCIONES FC → PLANTAS


Revista de Fitoterapia 2013; 13 (2): 101-122 1

INTERACCIONES FC - PLANTAS

Interés creciente

Número de publicaciones por año sobre la interacción de productos a base de plantas con medicamentos 2000 - 2014

Choi et al. (2016) J. Alt. Comp. Med. 22(4): 262-279

"Los productos están corectamente etiquetados en género, pero no especie. El ginseng es una de las plantas **más falsificadas**. **Falta la estandarización** de la planta. Dosificaciones muy variables"

Table 6. Plants most frequently involved in adverse effects as reported from three sources in the PlantLIBRA project.

Review from literatur	e [9]	Data from Poisons C	enters	Self-reported adverse effects (PFS Consumer	survey)
Plant	%ª	Plant	% a	Plant	% ⁸
Glycine max	19.3	Valeriana officinalis	14.3	Valeriana officinalis	9.2
Glycyrrhiza glabra	12.2	Camellia sinensis	6.2	Camellia sinensis	8.0
Camellia sinensis	8.7	Melissa officinalis	4.3	Ginkgo biloba	6.9
Ginkgo biloba	8.5	Mentha x piperita	4.3	Paullinia cupana	6.9
Citrus aurantium	5.1	Passiflora incarnata	4.3	Cynara scolymus	5.7
Cinnamomum verum	4.7	Paullinia cupana	4.3	Echinacea spp.	5.7
Cimicifuga racemosa	4.7	Glycyrrhiza glabra	3.7	Olea europaea	5.7
Echinacea purpurea	4.1	llex paraguariensis	3.7	Oryza sativa+ Monascus purpureus (Red rice)	5.7
Vitex agnus-castus	3.9	Panax ginseng	3.1	Panax ginseng	5.7
Hypericum perforatum	3.9	Citrus aurantium	2.5	Equisetum arvense	4.6
Panax ginseng	3.3	Cynara scolymus	2.5	Allium sativum	3.4
Valeriana officinalis	2.8	Dioscorea villosa	2.5	Foeniculum vulgare	3.4
Vitis vinifera	2.8	Allium ursinum	1.9	Glycine max	3.4
Total cases	492	Total cases	161	Total cases	87

enumber of counts/total cases

Otro problema frecuente. Contaminación intencionada

Subsenior et al. Design Mallow 2012, P.S.

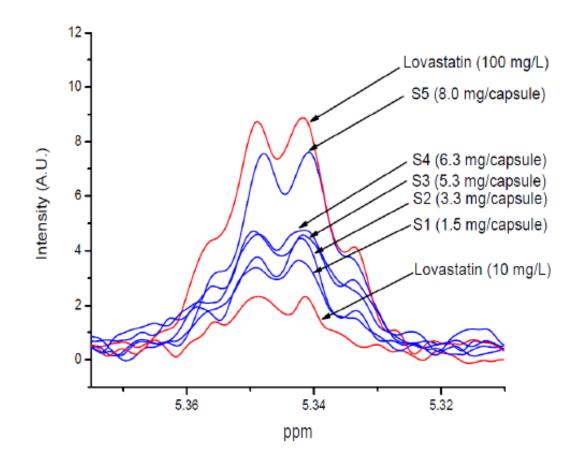
NMR evaluation of total statin content and HMG-CoA reductase inhibition in red yeast rice (Monascus spp.) food supplements

Dik W Lactennose", Yulk & Monainose" D. Thorus Nubblo', Spiro Lötel-Behands', Style Mokner', Nathias Kolf Himnelsche", Acal Wildres' and Oxistan Sefferi

Background: held yout may be, may be represent with Africanian and, as a bod againment, a started to be blue softweeting. The end years the conditional recognition is also known as foundation of the fundominal hygizanyi Coli (MMSCO)) individue. This after area to dividuo a servitive hudiur fragretic learnance (NAR) mathabitic determine the bits statin content of red year rise phidatis.

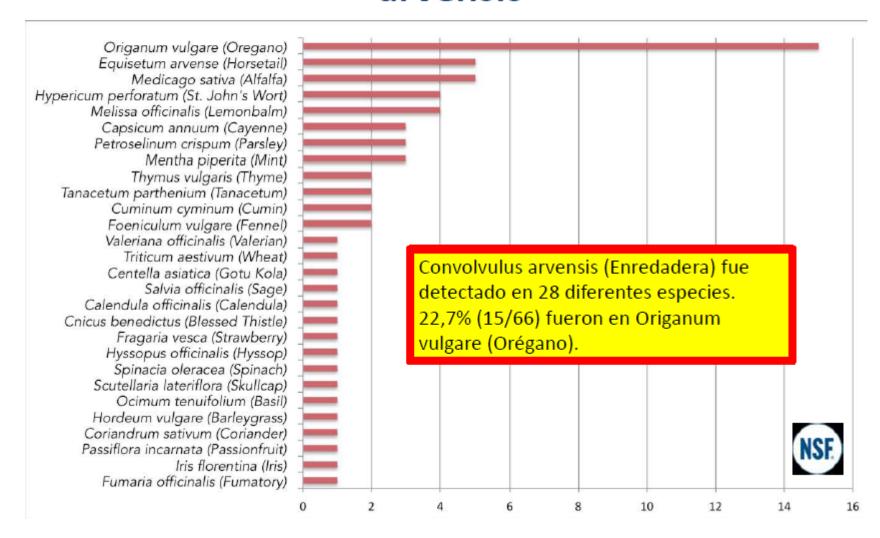
Methods: The total attancement was determined by a 400 MHz. In TMR specialogue, method, based on the religious of the multiple at 6.337.530 ppm of allydropies at the housey-brought-salese molesy in companion per tradictionates assay let.

Beading The MAR distance Print Street states, was formed, Separation as SIX registrapoles, if two captures are displied in Silmi, ettand). The relative standard desistors were solvicently lower than 17%. The solvi statis consentations of five red year rise sugglements were between 12 and 252 requestigated daily date. A disse dependent intriction of the HAELCAN reductive engine activity by the end years our products was demonstrate


Conclusion: A sample and direct NVR away you developed for detempt or the solid plate warries in real proof. The policy can be applied for the deleteroration of scale scenars for the segulatory control of eat-year rick

The ignormation products of Monacous, boys been used as fixed and traditional Chinese medicine for over 1000

repolements, primarily sold through the internet [2]. years [1]. The produces are called "Hong Qu", "Fine- ing the firmentation process. They cause a reversible


Monaculin compounds not itemed by Almansia dur-Out, "Ankey or "Anglight in China and Tanone, "less competitive inhibition of the microscopic hydrone-Keel' or 'red Keel' to Japan. In Europe, the productions - methyligheard, evenines A. (1984):-CeA: refurmant called "red read rice", "red read, "red resultd read as a flag, they present the reduction of HIME-Call to repos-"red Characters". It should be maket that the designa- loans and and the formation of challetens [2]. The rice is used as an additive for the colouring. Baroaring attractionally identical to brounds in, the limit state deap and preservation of Gods, which may be permitted in introduced into the market [3:4]. The reli year rice prior one Asia countries but not in burspe. Currentfored. Jack that we conside marketed as bod supplements Althor town the traditional and possitives that is said in Chinese pricents. The find applements are manufactared using selected Minapous strains under surefully controlled and fully requite out conditions to increase

now, and West Barton, although T.A.K. Individually Harger Stewart, 1936 Individual, Serving of splace following in tradition of the second like accom-

Especies conteniendo Convolvulus arvensis

NOMBRE DEL PRODUCTO / PRODUCT NAME	GUARANA
NOMBRE EN LATIN / BOTANICAL NAME	PAULLINA CUPANA
NOMBRE INGLES / ENGLISH NAME	
FAMILIA	SAPINDACEAE
NUMERO CAS / CAS NUMBER	84929-28-2
NUMERO EINECS / EINECS NUMBER	284-512-1
PARTE USADA DE LA PLANTA / PLANT PART USED	SEMILLA
EXCIPIENTE / EXCIPIENTS	MALTODEXTRINA
LOTE / BATCH N.	
SOLVENTE DE EXTRACCION / EXTRACTION SOLVENT	ETHANOL/AGUA
RATIO DE EXTRACCION / RATIO OF EXTRACTION	HASTA TITULO DECLARADO
PRESENCIA DE CONSERVANTE-ANTIOXIDANTE / PRESENCE OF PRESERVATIVES-	
ANTIOXIDANT	AUSENCIA
PRODUCCION	

TEST FISICO - PHYSICAL TESTS

TOTAL CITAL TO		
ESPECIFICACIONES /		
SPECIFICATIONS	STANDARD	
ASPECTO / APPEARANCE	POLVO MARRON	
ASPECTO / APPEARANCE	FOLVO MARKON	
OLOR / ODOUR	CARACTERISTICO / CHARACTERISTIC	
GUSTO / TASTE	CARACTERISTICO / CHARACTERISTIC	
TAMAÑO/ SIZE	40 MESH	
SOLUBILIDAD / SOLUBILITY	MODERADAMENTE SOLUBLE	
PERDIDA POR DESECACION	<5%	

TEST QUIMICO / CHEMICAL TESTS

ESPECIFICACIONES / SPECIFICATIONS	STANDARD	
TITULO / TITLE	10 - 12% CAFEINA	
RESIDUOS SOLVENTES / RESIDUAL		
SOLVENTS	<0,05%	

NOMBRE DEL PRODUCTO / PRODUCT NAME	GUARANA
NOMBRE EN LATIN / BOTANICAL NAME	PAULLINA CUPANA
NOMBRE INGLES / ENGLISH NAME	
FAMILIA	SAPINDACEAE
NUMERO CAS / CAS NUMBER	84929-28-2
NUMERO EINECS / EINECS NUMBER	284-512-1
PARTE USADA DE LA PLANTA / PLANT PART USED	SEMILLA
EXCIPIENTE / EXCIPIENTS	MALTODEXTRINA
LOTE / BATCH N.	
SOLVENTE DE EXTRACCION / EXTRACTION SOLVENT	ETHANOL/AGUA
RATIO DE EXTRACCION / RATIO OF EXTRACTION	HASTA TITULO DECLARADO
PRESENCIA DE CONSERVANTE-ANTIOXIDANTE / PRESENCE OF PRESERVATIVES	1-
ANTIOXIDANT	AUSENCIA
PRODUCCION	

TEST FISICO - PHYSICAL TESTS

ESPECIFICACIONES /	· · · · · · · · · · · · · · · · · · ·	
SPECIFICATIONS	STANDARD	METODO / METHOD
ASPECTO / APPEARANCE	POLVO MARRON	VISUAL / VISUAL
OLOR / ODOUR	CARACTERISTICO / CHARACTERISTIC	OLFATIVO / OLFACTORY
GUSTO / TASTE	CARACTERISTICO / CHARACTERISTIC	GUSTATIVO / OF TASTE
TAMAÑO/ SIZE	80 MESH	
DENSITAD RELATIVA / RALTIVE		
DENSITY	0,30 - 0,60g/ml	
SOLUBILIDAD / SOLUBILITY	MODERADAMENTE SOLUBLE	
PERDIDA POR DESECACION	<5%	

TEST QUIMICO / CHEMICAL TESTS

ESPECIFICACIONES / SPECIFICATIONS		STANDARD	METODO / METHOD
TITULO / TITLE		22% CAFEINA	HPLC
RATIO		3:1	
RESIDUOS SOLVE	NTES / RESIDUAL		
SOLVENTS		<0,05%	Eu. Pharm.v.v (2.4.24)

INTERACCIONES DE PRODUCTOS DE PLANTAS

EMA y ESCOP

Información de les monografías de la EMA y ESCOP

Fuente: www.fitoterapia.net

- Hasta el 2021
- √ 160 drogas y Preparados vegetales revisados
- Interacciones descritas en un 22%

rnat Vanaclocha *	e la EMA y ESCOP	Grupo de fármacos	Droguas vegetales	Grupo de fármacos	Droguas vegetales
er Risco * vador Cañigueral ^b	Hesumen El uso racional de la Fitoterapia se asienta en los requisito dad, seguridad y eficacia. Uno de los aspectos que más pre profesional de la salud es conocer las posibles interacciones preparados a base de plantas medicinales y los fármacos de	Anticoagulantes	7	Antidepressius	1
tonexus SL, Carlet, Valencia tat de Farmacología y macognòsia, Facultat de Farmàcia, versitat de Barcelona	especialmente los que tienen un margen terapéutico más como los anticoagulantes y los inmunosupresores. Aunque existen multitud de publicaciones sobre el tema,	^e Corticoides	7	Antivirals	1
eión de contacto: t Vanaclocha rdana, 11 Carlet, Valencia	tados que ofrecen son a menudo contradictorios y no siem basados en evidencias clínicas. En este trabajo mostramos la ciones descritas en las monografías de referencia en la actu- de la EMA (Agencia Europea del Medicamento) y de ESCOP! Scientific Cooperative on Phytotherapyl, que ofrecen datos i	Cardiotonicos y antiaritmicos	6	Antihipertensivos	1
hytonexus.com	oesde et punto de vista crinico, tanto en lo que respecta a indi- como a precauciones. Su análisis nos muestra que el núme gas vegetales que interaccionan con medicamentos es relati bajo (menos del 25%) y que las interacciones más frecuente	Immunosupressores	4	Anticonceptivos	1
	anticoagulantes, corticoides, cardiotónicos, antiarrifmicos, zepinas, antidepresivos y antivirales. Las drogas y prepa getales que muestran un nivel significativo de interaccion sumidad de hipérico, los lasantes hidroxiantracénicos, las di mucliagos, la raiz de regaliz, las drogas con taninos, el bulbo	Terapia hormonal	2	Teofilina	1
	hoja de ginkgo y la raíz de ginseng. Palabras clave	IMAO	2	Alteración absorción de fàrmacos en general	7
	Interacciones, drogas vegetales,preparados vegetales, fan síntesis, EMA (Agencia Europea del Medicamento) y de ESC pean Scientific Cooperative on Phytotherapy).		1	_	

REVIEW

Hypericum perforatum: Pharmacokinetic, Mechanism of Action, Tolerability, and Clinical Drug-Drug Interactions

Prescribed drug	Clinical results of the interaction with HP	Possible mechanism	References
Antihistamine			
Fexofenadine	Increased the maximum plasma concentration and decreased the oral c learance		Wang et al., 2002; Di et al., 2008
Bronchodilator			
Theophylline	Decreased plasma concentration	Induction of hepatic cytochromes	Chen et al., 2012
Cardiovascular			
Warfarin	A loss of the anticoagulant effect; significant reduction in the pharmacological effect of racemic warfarin		Gröning <i>et al.</i> , 2003; Jiang <i>et al.</i> , 2004
Phenprocoumon	Decreased plasma levels	Induction of CYP3A4	Chen et al., 2011
Nifedipine	Induced metabolism with increased plasma concentrations of dehydronifedipine	Induction of CYP3A4 and CYP2C19	Wang <i>et al.</i> , 2007
Verapamil	Reduced bioavailability	Induction of first-pass CYP3A4 metabolism	Tannergren et al., 2004
Digoxin	Decreased intestinal absorption; reduction of plasma AUC and C_{max}	Induction of the P-gp	Gottesman <i>et al.</i> , 1996; Johne <i>et al.</i> , 1999
Hypolipidemic	, and a second second		
Atorvastatin	Increased LDL	Increases CYP3A4 and Page activity	Holtzman <i>et al.</i> , 2006; Markowitz <i>et al.</i> , 2003
Simvastatin	Increased LDL	Decreased plasma concentrations	Sugimoto et al., 2001
Gastrointestinal			
Omeprazole, esomeprazole, and	Decrease plasma concentration of proton pump inhibitors	Induction of CYP2C19	Wang <i>et al.</i> , 2004
pantoprazole Loperamide	Brief episode of delirium	Theoretically induces a monoamine oxidase inhibitor-drug reaction	Khawaja <i>et al.</i> , 1999

REVIEW

Hypericum perforatum: Pharmacokinetic,
Mechanism of Action, Tolerability, and Clinical
Drug-Drug Interactions

Oral contraceptives Etinilestradiol and desogestrel Etinilestradiol and noretindrone	Reduction of plasmatic concentration, bleeding, and pregnancies Increased clearance of noretindrone and decreased half-time of etinilestradiol Increased metabolism of noretindrone and etinilestradiol	Induction of CYP3A4	Zhou <i>et al.</i> , 2004; Hall <i>et al.</i> , 2003; Borrelli and Izzo, 2009; Dresser <i>et al.</i> 2003; Izzo, 2004
Non-steroidal antiinfla	ammatory drugs	ı	
Ibuprofen	Reduction of plasmatic concentration	Increase expression of glycoprotein G	Bell <i>et al.</i> , 2007b; Zhou <i>et al.</i> , 2004; Izzo, 2004; Dresser <i>et al.</i> , 2003
Corticosteroids Dexamethasone, prednisone, and budesonide	Reduction of plasmatic concentration	Induction of CYP3A4	Izzo, 2004; Bell <i>et al.</i> , 2007a
Opioids			
Methadone and pethidine	Reduction of plasmatic concentration and	Induction of CYP2D2	Dostalek et al., 2005
Dextromethorphan	abstinence syndrome		
Oxycodone	Reduction of plasmatic concentration Reduction of plasmatic concentration	Induction of CYP3A4	Nieminen et al., 2010
Antimicrobial			
Voriconazole	Decreased AUC	Induction of CYP3A4, CYP2C19, and CYP2C9	Borrelli and Izzo, 2009
Erythromycin	Increased metabolism of erythromycin (decreased AUC)	Induction of CYP3A4 (40%)	Borrelli and Izzo, 2009
Indinavir	Decrease in AUC of 57%	Induction of CYP3A4	Borrelli and Izzo, 2009; Chen et al., 2012

PHYTOTHERAPY RESEARCH
Phytother. Res. (2013)
Published online in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/ptr.5050

REVIEW

Hypericum perforatum: Pharmacokinetic, Mechanism of Action, Tolerability, and Clinical Drug-Drug Interactions

Prescribed drug	Clinical results of the interaction with HP	Possible mechanism	References
Antineoplastic			
Imatinib	Decreased plasma concentration	Induction CYP3A4 and	
Irinotecan	Altered hepatic metabolism	P-gp	Caraci et al., 2011
Docetaxel	Decreased clinical efficacy		Izzo and Ernst, 2009
Immunosuppressants			
Cyclosporine	Decreased plasma concentration	Induction enzymes	He et al., 2012; Hu et al., 2005
Tacrolimus	Organ rejection	cytochrome and P-gp	Mai et al., 2003
Hypoglycaemic agents			
Gliclazide	Decreased plasma concentration	Induction enzymes	Izzo and Ernst, 2009
Tolbutamide		cytochrome and P-gp	Di <i>et al.</i> , 2008

AUC, area under the curve; HP, Hypericum perforatum; LDL, low-density lipoprotein; P-gp, P-glycoprotein.

Inducción del SMH por componentes propios de algunos vegetales

Antipirina / coles

10 voluntarios sanos, no fumadores ni consumidores habituales de café o té y no medicados durante el estudio:

10 días dieta control 7 días dieta rica en coles 10 días dieta control

- Niveles plasmáticos de antipirina disminuyen un 22%, la semivida plasmática disminuye un 13% y el aclaramiento metabólico aumenta un 11%, a las 30 horas de la administración.
- Valores retornan a la normalidad al reinstaurar la dieta control.

- INDOLES & GLUCOSINOLATOS
- ✓ Abundantes en verduras del género brassica: coles,
- dieta que contenga diariamente estas verduras puede reducir hasta la mitad la biodisponibilidad de algunos fármacos.

¿Requieren los vegetarianos mayores dosis de algunos fármacos?

AJO (ALLIUM SATIVUM)

Hipolipemiantes

Antiagregante

Activador de la fibrinólisis

Vasodilatador periférico

Antimicrobiano

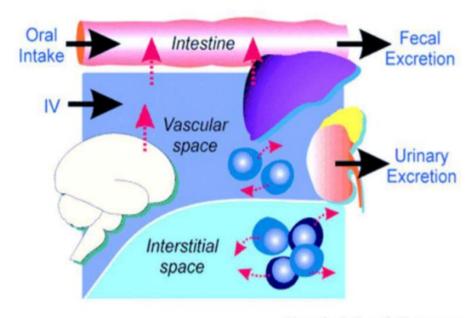
Antihelmíntico

Quelante

- Olor de la piel y la respiración
- Urticaria
- Quemaduras en piel con el uso tópico
- Irritación gastrointestinal
- Incremento de los tiempos de coagulación
- Hipotensión
- Vértigo de meniere

AJO (ALLIUM SATIVUM)

- *In vitro* se ha encontrado que inhibe CYP 2C9 CYP2C19, CYP3A4 y la actividad de la glucoproteína p.
- En hepatocitos humanos solo inhibición de CYP2C9
- Con la alicina pura o muy concentrada se ha encontrado inhibición de CYP3A4 y glucoproteína p y en otros casos inducción.


CYP3A4	FÁRMACOS			
SUSTRATOS	Acetominofen	Eritromicina	Retinoico (Ácido)	
	Aldrin	Etinilestradiol	Saquinavir	
	Alfentanil	Etoposida	Esteroides	
	Amiodarona	Flotamida	Tacrolimos	
	Aminopirina	Hidroxiarginina	Tamoxifen	
	Amprenavir	Ifosfamida	Taxol	
	Antipirina	Imipramina	Teniposida	
	Astemizol	Indinavir	Tefenadina	
	Benzfetamina	Lansoprazol	Tetrahidrocannabinol	
	Budesonida	Lidocaína	Teofilina	
	Carbamazepina	Loratadina	Torenifen	
	Celecoxib	Losartal	Triazolam	
	Cisaprida	Lovastatina	Trimetadona	
	Ciclofosfamida	Midazolam	Troleandomicina	
	Ciclosporina	Nelfinavir	Verapamil	
	Dapsona	Nicardipina	Warfarina	
	Delavirdina	Nifedipina	Zatocetron	
	Digotixin	Omeprazol	Zonisamida	
	Diltiazema	Quinidina		
	Diazepam	Rapamicina		

CYP2C9	FÁRMACOS	
SUSTRATOS	Ácido tietílico Celecoxib Diclofenaco Fenacetina Pentobarbital Fernitoina	Piroxicam Tenoxicam Tetrahidrocanabinol Tolbutamida Torsemida S- Warfarina

SUSTRATOS DE GLUCOPROTEÍNA P

- Morfina, metadona, loperamida
- Carvedilol, aliskiren
- Dabigatran
- Digoxina
- Ciclosporina, tacrolimus
- Indinavir, saquinavir
- Atorvastatina, lovastatina, simvastatina
- Amitriptilina

Tomado de Lee & Gottesman, J Clin Invest 101:287, 1998

CARDO MARIANO (Sylibum marianum)

- Flavoligninas: silimarina y silibilinas
- Flavonoides y esteroides

Hepatoprotector

CARDO MARIANO (Sylibum marianum)

- *In vitro*: Inhibición CYP2D6, CYP2E1, CYP3A4
- Estudios clínicos en humanos sanos:

En algunos no se ha demostrado afectación de las concentraciones de fármacos y en otros si, como es el caso de disminución de las concentraciones de metronidazol (posible inducción de CYP3A4 y glucoproteína p), el caso del losartan con un aumento del área bajo la curva y disminución de las concentraciones del metabolito (Posiblemente por inhibición de CYP2C9)

GINKGO BILOBA

Contiene compuestos flavónicos:

- Demencia
- Estados distímicos
- Enfermedad de Alzheimer
- Cefalea
- Hipoacusia moderada

- Actividad antiagregante
- Hemorragias cerebrales, oculares y postquirúrgicas

En Microsomas hepáticos humanos se encontró inhibición potente de CYP1A2, CYP2C19, CYP2C9

• Estudios clínicos en humanos han encontrado una importante inducción del CYP2C19 Y CYP2C9

Omeprazol, lanzoprazol

Amitriptilina

Clopidogrel

Ciclofosfamida

Diazepam

Fenitoína

• Estar atentos con posibles interacciones con sustratos de CYP3A4

• Debido a que se ha descrito que el GB es un inhibidor del factor activador plaquetario puede interaccionar con antiplaquetarios o anticoagulantes.

Drug Metab Rev. 2013 Aug;45(3):353-85. doi: 10.3109/03602532.2013.815200.

Pharmacokinetic drug interactions involving Ginkgo biloba.

Unger M¹.

Author information

Abstract

Ginkgo biloba leaf extracts (GLEs) are popular herbal remedies for the treatment of Alzheimer's dementia, tinnitus, vertigo and peripheral arterial disease. As GLEs are taken regularly by older people who are likely to also use multiple other drugs for the treatment of, e.g. hypertension, diabetes, rheumatism or heart failure, potential herb-drug interactions are of interest. Preclinical studies of high doses/concentrations of GLEs of varying quality and standardization hinted at both an inhibition and induction of metabolic enzymes and transporters. However, in humans, positive in vitro-findings could not be replicated in vivo. At maximum recommended doses of 240 mg/day, a clinically relevant interaction potential of the standardized GLE EGb 761 could not be shown. GLE doses higher than the recommended ones led to a weak induction of the CYP2C19-mediated omeprazole 5-hydroxylation, and a weak inhibition of the CYP3A4-mediated midazolam 1'-hydroxylation, respectively. Also, the regular intake of a poorly characterized GLE at a dose of 360 mg/day slightly increased the bioavailability of talinolol, a substrate of P-glycoprotein and various organic anion-transporting polypeptides. Thus, regarding pharmacokinetic herb-drug interactions, the intake of the standardized GLE, EGb 761, together with synthetic drugs appears to be safe as long as daily doses up to 240 mg are consumed. If this applies to other extracts prepared according to the European Pharmacopoeia remains uncertain. Also, a relevant potential for drug interactions cannot be excluded for poorly standardized GLEs used in many food supplements.

PANAX GINSENG

Usos

- Regula la presión arterial
- Inmunoestimulante
- Hipolipemiante
- Hipoglicemiante
- Incrementa la secreción de insulina
- Regula la formación de glucógeno hepático.
- Inhibición de la agregación plaquetaria por medio de la regulación de niveles de GMPc y tromboxano A2.
- Efecto estimulante en SNC

Efectos adversos reportados

- Hipertensión
- Mareo
- Dificultad para concentrarse
- Síndrome de Stevens-Johnson
- Mastalgia

PANAX GINSENG

- P. ginseng y warfarina Interacción ?
- Se ha encontrado una leve inducción de CYP3A4 lo que sería importante seguir en los medicamentos que sean sustratos de esta y de estrecho margen terapéutico tales como ciclosporina, tacrólimus, carbamazepina, irinotecan Y sirólimus.

CARBAMAZEPINA

P. GINSENG

Ataxia

Mareo

Nauseas

Boca seca

VALERIANA OFFICINALIS

<u>Farmacodinámicas</u>

• Depresores del sistema nervioso central

Farmacocinéticas

Inhibición de CYP450 3A4

Verapamilo valeriana bloqueo AV de 1er grado

Review > Expert Opin Drug Metab Toxicol. 2018 Jan;14(1):43-57.

doi: 10.1080/17425255.2018.1418854. Epub 2017 Dec 19.

Piperine-mediated drug interactions and formulation strategy for piperine: recent advances and future perspectives

Article highlights.

- Piperine may affect the intestinal drug absorption process via the various mechanisms.
- Piperine can inhibit or stimulate the expression and functional activity of metabolic enzymes and drug transporters, depending on the administered doses, route of administration, and duration of treatment.
- Piperine may be used as a bioenhancer to improve the oral bioavailability of coadministered drugs.
- The concurrent use of piperine may cause clinically significant piperine-drug interactions, leading to therapeutic benefits or adverse effects.

Turmeric

Common Names

- Indian saffron
- Curcumin
- Jiang huang

Herb-Drug Interactions

Anticoagulants / Antiplatelets: Preclinical studies (54) (55) and a case report (66) suggest that turmeric can increase risk of bleeding.

Camptothecin: Turmeric inhibits camptothecin-induced apoptosis of breast cancer cell lines in vitro ⁽²⁸⁾. Clinical relevance is not known.

Mechlorethamine: Turmeric inhibits mechlorethamine-induced apoptosis of breast cancer cell lines in vitro ⁽²⁸⁾. Clinical relevance is not known.

Paclitaxel: In a recent case report, a lung cancer patient suffered liver toxicity while undergoing active treatment with paclitaxel. Although he was taking multiple supplements, one of which was tainted, turmeric was thought to be among the likely causes ⁽⁷³⁾.

Doxorubicin: Turmeric inhibits doxorubicin-induced apoptosis of breast cancer cell lines in vitro ⁽²⁸⁾. Clinical relevance is not known.

Cyclophosphamide: Dietary turmeric inhibits cyclophosphamide-induced tumor regression in animal studies ⁽²⁸⁾. Clinical relevance is not known.

Norfloxacin: Pretreatment with curcumin resulted in increased plasma elimination half-life, thereby reducing the dosage of norfloxacin in animal model ⁽⁵⁶⁾. Clinical relevance is not known.

> Eur Rev Med Pharmacol Sci. 2018 Aug;22(15):5042-5046. doi: 10.26355/eurrev_201808_15647.

Interaction study between antiplatelet agents, anticoagulants, thyroid replacement therapy and a bioavailable formulation of curcumin (Meriva®)

S Hu 1, G Belcaro, M Dugall, P Peterzan, M Hosoi, A Ledda, A Riva, L Giacomelli, S Togni, R

Results: After 10 days of supplementation with Meriva® the average BT value was not significantly different for patients assuming acetylsalicylic acid, ticlopidine or clopidogrel at standard dosages. Similarly, after 10 days of Meriva® treatment, the INR level in the two groups of patients assuming warfarin or dabigatran was not statistically different from that observed at baseline. In the analyzed patients assuming LT4 or metformin, no interactions between the therapy and Meriva® were observed.

Conclusions: Results from this non-interaction clinical study suggest that Meriva® does not interfere with the antiplatelet activity of the most common antiplatelet agents nor alters the INR values in stable patients assuming warfarin or dabigatran. Similarly, dosages of LT4 or metformin do not need to be adjusted in case of complementary treatment with Meriva®.

Gracias;)